Solve two problems from each of the three parts, for a total of six problems. If you have doubts about the wording of a problem, please ask for clarification. In no case should you interpret a problem in such a way that it becomes trivial. **Justify all your answers.**

Part A.

1. Suppose G is a finite simple group with $|G| \geq 3$ and $H \leq G$ is a proper subgroup of index n. Prove $|G|$ divides $\frac{n!}{2}$.

2. Let G be a finite group, let p be a prime dividing $|G|$, and let P be a Sylow p-subgroup of G.

 (a) Prove P is the unique Sylow p-subgroup of $N_G(P)$. (Here, for a subgroup $H \leq G$, we write $N_G(H)$ for the normalizer of H in G.)

 (b) Prove $N_G(P) = N_G(N_G(P))$.

3. This problem concerns groups of order 105.

 (a) Prove any group of order 105 contains a normal subgroup of order 35.

 (b) Prove there are just two groups, up to isomorphism, of order 105.

Part B.

4. Suppose $k \subset L$ is a finite, Galois extension with Galois group isomorphic to A_5.

 (a) Prove there is no intermediate field $k \subset E \subset L$ with $[E : k]$ equal to 2, 3, or 4.

 (b) Find, with proof, the number of intermediate fields $k \subset E \subset L$ with $[E : k] = 12$.

5. Let $f(x) = x^4 + 3 \in \mathbb{Q}[x]$ and let L be the splitting field of $f(x)$. Find, with justification, the Galois group $Gal(L/\mathbb{Q})$.
(6) Let \(f(x) \in \mathbb{Q}[x] \) be a degree five polynomial, let \(L \) be the splitting field of \(f(x) \), and let \(G = \text{Gal}(L/\mathbb{Q}) \).

(a) Prove \(f(x) \) is irreducible if and only if five divides \(|G| \).

(b) Assume that \(f(x) \) is irreducible. Prove \(|G| \) can be equal to 5.
(Hint: One approach is to consider a subextension of a cyclotomic extension.)

Part C.

(7) Let \(R \) be a left semi-simple ring.

(a) Prove every quotient ring of \(R \) (i.e., every ring of the form \(R/I \) where \(I \) is a two-sided ideal) is also a left semi-simple ring.

(b) Give, with justification, an example showing that a subring of \(R \) need not be a left semi-simple ring.

(8) Let \(\rho \) be a complex, linear representation of a finite group \(G \), and let \(\chi \) be the associated character.

(a) Prove \(\frac{1}{|G|} \sum_g \chi(g) \) is the number of times the trivial one-dimensional representation appears in the direct sum decomposition of \(\rho \) into irreducible representations.

(b) Prove that if \(\frac{1}{|G|} \sum_g \|\chi(g)\|^2 = 3 \), then \(\rho \) is a direct sum of three distinct irreducible representations.

(9) Let \(N = \langle x \rangle \) be a cyclic group of order 3, let \(H = \langle y \rangle \) be a cyclic group of order 4, and let \(G = N \rtimes \alpha H \), where \(\alpha : H \to \text{Aut}(N) \) is given by \(\alpha(y)(x) = x^{-1} \).
(In terms of generators and relations, \(G = \langle x, y \mid x^3 = e, y^4 = e, yxy^{-1} = x^{-1} \rangle \).) You may use, without proof, that the conjugacy classes of \(G \) are represented by the elements \(e, y^2, x, xy^2, y, y^3 \) and have sizes 1, 1, 2, 2, 3, 3 respectively.

(a) Prove that there are, up to isomorphism, precisely two irreducible 2-dimensional (complex linear) representations of \(G \).

(b) Describe one such irreducible 2-dimensional representation of \(G \).
(Hint: One way to do this is to consider the group \(G/ \langle y^2 \rangle \).

(c) Give, with justification, the character table of \(G \).