Math 901-902 Comprehensive Exam
June 7, 2002 1–5pm

Do two of the three given problems from each of the three sections, for a total of six problems. If you have doubts about the wording of a problem, please ask for clarification. In no case should you interpret a problem in such a way that it becomes trivial.

I Group Theory

I.1 Prove that every group of order $2^n \cdot 3$, for $n \geq 1$, is solvable.

I.2 Find (with proof) the smallest odd integer n such that there is a non-abelian group of order n. (In addition to showing that every group of odd order less than n is abelian, you should construct, with justification, a group of order n which is non-abelian.)

I.3 Let G be a non-abelian group of order p^3, for some prime p. Prove that every subgroup of G of order p^2 contains the center of G.

II Field Theory and Galois Theory

II.1 Let F be the splitting field of the polynomial $x^4 - 7$ over \mathbb{Q}. By computing the Galois group of F over \mathbb{Q}, find all intermediate fields $\mathbb{Q} \subset E \subset F$ such that E is normal over \mathbb{Q}.

II.2 Let $F \subset K$ be a finite Galois extension and assume E is an intermediate field. Let $G = \text{Aut}_F(K)$ and $H = \text{Aut}_E(K)$. (Recall that for an arbitrary field extension $L \subset L'$, the group $\text{Aut}_L(L')$ — sometimes written $\text{Gal}(L'/L)$ — consists of field automorphisms of L' fixing L.)

(a) Prove $N_G(H)$ is equal to $\{g \in G | g(E) = E\}$.

(b) Prove $N_G(H)/H \cong \text{Aut}_F(E)$.

II.3 Prove that \mathbb{C}, the field of complex numbers, is algebraically closed. (Give an algebraic proof, using Sylow theorems and Galois theory. The only analytic tools you should need are the following facts: (a) Every real polynomial of odd degree has a real root; and (b) every complex number has a square root.)

III Rings and Modules

III.1 Prove that a finitely generated projective module P over a local ring R is free.

III.2 Let R be a commutative ring (with identity) and let p be a minimal prime ideal of R. Prove that every element of p is a zero-divisor of R. (Recall that a zero-divisor of a ring R is an element x such that $xy = 0$ for some non-zero element y.) Hint: Consider the multiplicative set $S = \{ab | a \notin p$ and b is a non-zero-divisor of $R\}$.

III.3 Suppose R is an integral domain. Prove that the following assertions are equivalent.

(a) R is normal (i.e., R is integrally closed in its field of fractions).

(b) $S^{-1}R$ is normal for every multiplicatively closed subset S of R (with $0 \notin S$).

(c) R_m is normal for each maximal ideal m of R.