ON THE 2-DIMENSIONAL JACOBIAN CONJECTURE AND
AFFINE VARIETIES CONTAINING \mathbb{C}^2

DAVID WRIGHT
Department of Mathematics
Washington University
St. Louis
USA
wright@einstein.wustl.edu

Abstract. The two-dimensional Jacobian Conjecture is equivalent to the non-
existence of a map of complex varieties $f : V \to \mathbb{C}^2$ where V is an affine variety
properly containing \mathbb{C}^2 as an open subvariety, f restricted to \mathbb{C}^2 has constant non-
zero Jacobian determinant, $V - \mathbb{C}^2$ is a (possibly singular) rational curve whose
 normalization is C^1, and V admits a map to CP^1 making it a C^1-bundle over CP^1.
We show the non-existence of such a map f for a large class of such affine varieties V.

References

1. David Wright Affine surfaces fibered by affine lines over the projective line, Ill. Jour. Math.,
vol 41, No. 4, Winter 1997, 589–605