Harbourne's M107

Solutions

[1] (a) Give an example of a series which is only conditionally convergent. Justify your answer.

Answer: $1 + 1/2 - 1/3 + 1/4 \pm$ is convergent since it is an alternating series, and the absolute values of the terms are decreasing and have limit 0. But the absolute values of the terms give a p-series with p = 1 (i.e., the harmonic series), which is divergent.

(b) Determine whether or not the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$ is absolutely convergent. Justify your answer. **Answer**: Using the ratio test, we have $|((-1)^{k+2} \frac{1}{(k+1)!})/((-1)^{k+1} \frac{1}{k!})| = 1/(k+1)$, which has limit 0, so the series $\sum_{k=1}^{\infty} \frac{1}{k!}$ converges, so $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$ is absolutely convergent.

[2] Using facts about alternating series, determine an $n \ge 0$ such that the difference between the sum S of the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$ and its partial sum $S_n = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!}$ is less than 0.01. Justify your answer.

Answer: The difference is always at most the absolute value of the next term, which is 1/(n+1)!, so it is enough to take n big enough so that 1/(n+1)! < 0.01; i.e., 100 < (n+1)!. Since 5! = 120, we can take n = 4.

[3](a) Write down the Taylor polynomial $P_4(x)$ for $f(x) = e^x$.

[3](a) Write down the rayion polynomial $1_4(x)$ for f(x) = 1. **Answer**: $1 + x + x^2/2! + x^3/3! + x^4/4!$ (b) The series $\sum_{k=1}^{\infty} \frac{2^{k+1}}{k!}$ is obtained by evaluating the Taylor series of some function g(x) at a particular value of x. Find g(x) by modifying the Taylor series of e^x , and then find the sum S of the series exactly by evaluating g(x) at an appropriate value of x. Explain your answer. **Answer**: What we want is $2^2/1 + 2^3/2! + 2^4/3! + \cdots$. We know $e^2 = 1 + 2/1! + 2^2/2! + 2^3/3! + \cdots$, so $2(e^2 - 1) = 2(2 + 2^2/2! + 2^3/3! + \cdots) = 2(2 + 2^2/2! + 2^3/3! + \cdots) = 2(e^x - 1)$. Evaluated at x = 2, so the series sums to $2(e^2 - 1)$.

 $2^2/1 + 2^3/2! + 2^4/3! + \cdots$ I.e., the function is $g(x) = x(e^x - 1)$ (we could also use $g(x) = 2(e^x - 1)$), evaluated at x = 2, so the series sums to $2(e^2 - 1)$. [4] Determine the radius and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-2)^k}{k^{3^k}}$. Justify your answers, and make sure to explain what happens at both endpoints of the interval.

Answer: Using the ratio test, we take the limit, for $k \to \infty$, of $\left|\frac{\frac{(x-2)^{k+1}}{(k+1)3^{k+1}}}{\frac{(x-2)^k}{k^3k}}\right| = |(x-2)k/(3(k+1))|$. The limit is |(x-2)/3|, so except for the endpoints,

the interval of convergence is |(x-2)/3| < 1, or -1 < x < 5, which tells us the radius of convergence is 3. When x = -1, the series is $\sum_{k=1}^{\infty} (-1)^k \frac{3^k}{k3^k}$, which converges by the alternating series test. When x = 5, the series is $\sum_{k=1}^{\infty} \frac{3^k}{k3^k}$, which is the harmonic series, and so diverges. Thus the interval of convergence is -1 < x < 5.

[5] Let C be the curve given parametrically by $x(t) = t^2$ and $y(t) = t^3 - t$.

(a) Determine the x - y equation of the tangent line to the curve at the point x = 4, y = 6.

Answer: First, x' = 2t and $y' = 3t^2 - 1$. The given point is given by t = 2, so x'(2) = 4 and y'(2) = 11. The slope of the tangent line is y'(2)/x'(2) = 11/4, so the equation (in point slope form) is y - 6 = 11(x - 4)/4.

(b) Find all values of t such that the curve has a horizontal tangent line.

Answer: I.e., solve $0 = y'(t)/x'(t) = (3t^2 - 1)/(2t)$; thus $3t^2 - 1 = 0$ so $t = \pm 1/\sqrt{3}$.

Harbourne's M107

Solutions

Exam III Spring 2004

[1] (a) Give an example of a series which is only conditionally convergent. Justify your answer.

Answer: $1 + 1/2 - 1/3 + 1/4 \pm$ is convergent since it is an alternating series, and the absolute values of the terms are decreasing and have limit 0. But the absolute values of the terms give a p-series with p = 1 (i.e., the harmonic series), which is divergent.

(b) Determine whether or not the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$ is absolutely convergent. Justify your answer. **Answer**: Using the ratio test, we have $|((-1)^{k+2} \frac{1}{(k+1)!})/((-1)^{k+1} \frac{1}{k!})| = 1/(k+1)$, which has limit 0, so the series $\sum_{k=1}^{\infty} \frac{1}{k!}$ converges, so $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$ is absolutely convergent.

[2] Using facts about alternating series, determine an $n \ge 0$ such that the difference between the sum S of the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$ and its partial sum $S_n = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!}$ is less than 0.01. Justify your answer.

Answer: The difference is always at most the absolute value of the next term, which is 1/(n+1)!, so it is enough to take n big enough so that 1/(n+1)! < 0.01; i.e., 100 < (n+1)!. Since 5! = 120, we can take n = 4.

[3](a) Write down the Taylor polynomial $P_4(x)$ for $f(x) = e^x$.

Answer: $1 + x + x^2/2! + x^3/3! + x^4/4!$ (b) The series $\sum_{k=1}^{\infty} \frac{2^{k+1}}{k!}$ is obtained by evaluating the Taylor series of some function g(x) at a particular value of x. Find g(x) by modifying the Taylor series of e^x , and then find the sum S of the series exactly by evaluating g(x) at an appropriate value of x. Explain your answer.

Answer: What we want is $2^2/1 + 2^3/2! + 2^4/3! + \cdots$. We know $e^2 = 1 + 2/1! + 2^2/2! + 2^3/3! + \cdots$, so $2(e^2 - 1) = 2(2 + 2^2/2! + 2^3/3! + \cdots) = 2^2/1 + 2^3/2! + 2^4/3! + \cdots$. I.e., the function is $g(x) = x(e^x - 1)$ (we could also use $g(x) = 2(e^x - 1)$), evaluated at x = 2, so the series sums to $2(e^2 - 1)$. [4] Determine the radius and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-2)^k}{k3^k}$. Justify your answers, and make sure to explain what happens at both endpoints of the interval.

Answer: Using the ratio test, we take the limit, for $k \to \infty$, of $\left|\frac{\frac{(x-2)^{k+1}}{(k+1)3^{k+1}}}{\frac{(x-2)^k}{k^{3^k}}}\right| = |(x-2)k/(3(k+1))|$. The limit is |(x-2)/3|, so except for the endpoints,

the interval of convergence is |(x-2)/3| < 1, or -1 < x < 5, which tells us the radius of convergence is 3. When x = -1, the series is $\sum_{k=1}^{\infty} (-1)^k \frac{3^k}{k3^k}$, which converges by the alternating series test. When x = 5, the series is $\sum_{k=1}^{\infty} \frac{3^k}{k3^k}$, which is the harmonic series, and so diverges. Thus the interval of convergence is -1 < x < 5.

[5] Let C be the curve given parametrically by $x(t) = t^2$ and $y(t) = t^3 - t$.

(a) Determine the x - y equation of the tangent line to the curve at the point x = 4, y = 6.

Answer: First, x' = 2t and $y' = 3t^2 - 1$. The given point is given by t = 2, so x'(2) = 4 and y'(2) = 11. The slope of the tangent line is y'(2)/x'(2) = 11/4, so the equation (in point slope form) is y - 6 = 11(x - 4)/4.

(b) Find all values of t such that the curve has a horizontal tangent line.

Answer: I.e., solve $0 = y'(t)/x'(t) = (3t^2 - 1)/(2t)$; thus $3t^2 - 1 = 0$ so $t = \pm 1/\sqrt{3}$.